Evaluation Framework for ML-based IDS
1 : Laboratoire Lorrain de Recherche en Informatique et ses Applications
Université de Lorraine, Centre National de la Recherche Scientifique
2 : Télécom SudParis
Institut Polytechnique de Paris
3 : LIP6
* : Auteur correspondant
Sorbonne Université, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique : UMR7606
Intrusion detection is an important topic in cybersecurity research, but the evaluation methodology has remained stagnant despite advancements including the use of machine learning. In this paper, we design a comprehensive evaluation framework for Machine Learning (ML)-based IDS and take into account the unique aspects of ML algorithms, their strengths, and weaknesses. The framework design is inspired by both i) traditional IDS evaluation methods and ii) recommendations for evaluating ML algorithms in diverse application areas. Data quality being the key to machine learning, we focus on data-driven evaluation by exploring data-related issues