Un événement

GDR Sécurité Informatique Region Centre Val de Loire

organisé par 

Le Laboratoire d'Informatique Fondamentale d'Orleans INSA Val de Loire
Evaluation Framework for ML-based IDS
Solayman Ayoubi  1, *@  , Gregory Blanc  2, *@  , Houda Jmila  2, *@  , Sébastien Tixeuil  3, *@  , Thomas Silverston  1, *@  
1 : Laboratoire Lorrain de Recherche en Informatique et ses Applications
Université de Lorraine, Centre National de la Recherche Scientifique
2 : Télécom SudParis
Institut Polytechnique de Paris
3 : LIP6
Sorbonne Université, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique : UMR7606
* : Auteur correspondant

Intrusion detection is an important topic in cybersecurity research, but the evaluation methodology has remained stagnant despite advancements including the use of machine learning. In this paper, we design a comprehensive evaluation framework for Machine Learning (ML)-based IDS and take into account the unique aspects of ML algorithms, their strengths, and weaknesses. The framework design is inspired by both i) traditional IDS evaluation methods and ii) recommendations for evaluating ML algorithms in diverse application areas. Data quality being the key to machine learning, we focus on data-driven evaluation by exploring data-related issues


Personnes connectées : 3 Vie privée
Chargement...